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Abstract. We analyze here how future solar neutrino experiments could detect neutrino flux fluctuations
due to magnetohydrodynamics (MHD) perturbations on the solar plasma. We state that if such time
fluctuations are detected, this would provide a unique signature of the resonant spin-flavor precession
(RSFP) mechanism as a solution to the solar neutrino problem.

1 Introduction

Assuming a non-vanishing magnetic moment for neutri-
nos, active solar neutrinos that are created in the Sun in-
teract with the solar magnetic field and can be spin-flavor
converted into sterile non-electron neutrinos or into ac-
tive non-electron anti-neutrinos. In both cases the result-
ing particles interact with solar neutrino detectors signif-
icantly less than the original active electron neutrinos, in
such a way that this phenomenon can induce a depletion
in the detectable solar neutrino flux [1,2]. If this interac-
tion of the neutrinos with the solar magnetic field is the
mechanism that explains the neutrino deficit on Earth,
or, in other words, if the spin-flavor precession (RSFP) is
the mechanism that can solve the solar neutrino problem,
neutrinos are necessarily very much sensitive to fluctua-
tions of the solar magnetic field, and, in particular, solar
magnetohydrodynamic (MHD) perturbations can lead to
time fluctuations of the solar neutrino flux detected on
Earth.

According to previous works which analyze the RSFP
phenomenon [3], the low energy solar neutrinos, with E =
1 MeV, will be more sensitive to MHD fluctuations, with
a typical period of the order of a few days. Some operat-
ing solar neutrino detectors that are sensitive to such an
energy range, like Homestake [4], Gallex/GNO [5,6] and
Sage [7] cannot detect these fluctuations because they do
not operate in a real-time basis, and such small fluctua-
tions will be averaged out over the detection time. The
Super-Kamiokande [8] and SNO [9] detectors operate in
real-time basis but have a too high threshold in the neu-
trino energy to be sensitive to such fluctuations. There-
fore, it is necessary to consider the detectors that oper-
ate in a real-time basis and that have a low threshold in
the neutrino energy, like Borexino [10], Hellaz [11] and
Heron [12]. In the present paper we consider how these
MHD perturbations can be seen by these experiments,

taking into account experimental details like the cross-sec-
tion and threshold. We concluded that no time fluctuation
will be felt by the Borexino experiment, while the Hellaz
and/or Heron experiment may be able to detect the time
fluctuations on the neutrino signal generated by the MHD
fluctuations.

2 MHD perturbations

The MHD perturbations were calculated deriving the
MHD equations near the solar equator, the region relevant
for solar neutrinos. Using cylindrical coordinates, consid-
ering also the effects of gravity, we obtained the Hain–Lüst
equation with gravity [13,14]:

∂

∂r

(
f(r)

∂

∂r
(rξr)

)
+ h(r)ξr = 0, (1)

where

f(r) =
γp + B2

o

r

(ω2 − ω2
A)(ω2 − ω2

S)
(ω2 − ω2

1)(ω2 − ω2
2)

, (2)

h(r) = ρ0ω
2 − k2B2

0 + g
∂ρ0

∂r

− 1
D

gρ2
0(ω

2ρ0 − k2B2
0)
[
gH +

ω2

r

]

− ∂

∂r

[
1
D

ω2ρ2
0g(ω2ρ0 − k2B2

0)
]

, (3)

and

ω2
A =

k2B2
0

ρ0
, ω2

S =
γp

γp + B2
0

k2B2
0

ρ0
, (4)

ω2
1,2 =

H(γp + B2
0)

2ρ0



460 M.M. Guzzo et al.: MHD fluctuations and low energy solar neutrinos

0.0 0.2 0.4 0.6 0.8 1.0
r/RSun

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.0

0.5

1.0

a) Bo/Bmax.

b) δBo

Fig. 1a,b. Results of MHD fluctuations on the magnetic field
using a triangular profile in the convective zone: in a is shown
the non-perturbed magnetic field profile B0 normalized by its
maximum value Bmax as a function of the radial distance r nor-
malized by the solar radius RSun. In b the MHD fluctuations
δB0 are shown as a function of r/RSun
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where ξr is the radial component of the plasma displace-
ment ξ, g is the acceleration due to gravity, p is the pres-
sure, γ = Cp/Cv is the ratio of the specific heats, ρ0 is the
equilibrium matter density profile and B0 is the magnetic
equilibrium profile in the Sun. In this derivation we con-
sidered the equilibrium magnetic profile B0 to be in the z
direction.

The Hain–Lüst equation shows singularities when f(r)
given in (2) is equal to zero, that is, when w2 = w2

A
or w2 = w2

S, which regions in the w2 space are called
Alfvén and slow continua, respectively. In the interval
0 ≤ r ≤ 1 the functions w2

A and w2
S take continuous values

that define the ranges of the values of w2 that correspond
to improper eigenvalues, associated with localized modes.
Eigenvalues of the Hain–Lüst equation must be searched,
therefore, outside the regions where w2 = w2

A or w2 = w2
S,

and they define the global modes which are associated
with magnetic and density waves along the whole radius
of the Sun.

For the equations above we considered for the solar
matter density distribution, ρ0, and for the pressure p, the
standard solar model prediction, that is, approximately
monotonically decreasing exponential functions in the ra-
dial direction from the center to the surface of the Sun
[15]. The density profile was used to calculate the acceler-
ation of gravity. For the equilibrium magnetic profile we
assumed a triangular configuration in the convective zone

and an exponential decreasing profile in the center of the
Sun. This magnetic profile is presented in Fig. 1a. We have
chosen this profile because it gives a very good fit to the
solar neutrino problem, as we will see in the next section.

The global modes were obtained solving numerically
the Hain–Lüst equation with gravity, imposing appropri-
ate boundary conditions to b1 and ρ1, the magnetic and
density perturbations respectively, given by [13]

b1 = ∇ × (ξ × B0) (8)

and
ρ1 = ∇ · (ρξ). (9)

The matter density fluctuations were very constrained
by helioseismology observations. The largest density fluc-
tuations ρ1 inside the Sun are induced by temperature
fluctuations δT due to convection of matter between lay-
ers with different local temperatures. According to an es-
timate of such an effect [3], we assume density fluctua-
tions ρ1/ρ0 smaller than 10%. The size of the amplitude
b1 is not very constrained by the solar hydrostatic equi-
librium, since the magnetic pressure B2

0/8π is negligibly
small when compared with the dominant gas pressure for
the equilibrium profiles considered. Despite this fact, it
cannot be arbitrarily large when we are solving the Hain–
Lüst equation. This equation is obtained after lineariza-
tion of the magnetohydrodynamics equations, which re-
quires that the solution ξ must be very small, |ξ| << 1, so
that the non-linear terms can be neglected. Moreover, we
must have a clear distinction between the maximum and
minimum magnetic field. In order to satisfy these crite-
ria and have a significant effect, we choose the maximum
value of the perturbation such that |b1|/|B0| ∼ 0.5. In
Fig. 1b we present a sample of a global MHD magnetic
perturbation.

The period of the global modes that we obtained con-
sidering the equilibrium profiles and boundary conditions
mentioned above is around 20 days [6].

3 Fitting the data

If we consider a non-vanishing neutrino magnetic moment,
the interaction of such neutrinos with this magnetic field
will generate neutrino spin-flavor conversion which is given
by the evolution equations
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where νL (νR) is the left- (right-) handed component of the
neutrino field, ∆m2 is the squared mass difference of the
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Fig. 2a,b. The neutrino survival probability PSurvival, as a
function of ∆m2/4E, for the maximum and the minimum of
the MHD fluctuation, and b the fluctuations of the survival
probability ∆PSurvival, caused by MHD perturbations, which
is calculated as the difference of the two curves in a. We used
here a triangular profile for the solar magnetic field on the
convective zone

corresponding physical fields, E is the neutrino energy, GF
is the Fermi constant, µν is the neutrino magnetic moment
and |B⊥(r)| is the transverse component of the perturbed
magnetic field. Finally, we have Neff = Ne(r) − Nn(r) for
Majorana neutrinos, where Ne(r) (Nn(r)) is the electron
(neutron) number density distribution, in which case the
final right-handed states νR are active non-electron anti-
neutrinos. For Dirac neutrinos, Neff = Ne(r) − 1/2Nn(r);
in this case the right-handed final states are sterile non-
electron neutrinos [5]. In this paper we will assume Majo-
rana neutrinos. Note, however, that since Nn ∼ (1/6)Ne

inside the Sun, the difference of taking Dirac or Majorana
neutrinos leads to a multiplicative factor of ∼ 10/11, and
does not lead to sensible alterations in our conclusions,
which are, in this way, valid for Majorana or Dirac neu-
trinos.

MHD magnetic and density fluctuations, b1 and ρ1,
can alter the neutrino evolution since they can induce a
time variation of the transverse component of the mag-
netic field |B⊥(r)| as well as the matter density Ne(r)
appearing in the evolution equation above. Therefore, the
MHD fluctuations can induce a time variation on the sur-
vival probability of the neutrinos, that can be detected
in the experiments on Earth. In Fig. 2 we present a sam-
ple of the effect of the MHD fluctuations on the survival
probability of the neutrinos as a function of ∆m2/4E.

To analyze the results of these time fluctuations on
specific experiments, it is necessary to establish exactly in
which range of ∆m2 we are working. To do so, we made
a general fit of the RSFP solution to the total rate of
the present solar neutrino experiments, and restricted the
range of ∆m2 into some confidence level region. Although
this kind of fit was already done in recent papers [16–

20], the magnetic field configurations we are using here
are not exactly the same as the ones used in these papers
(for instance, we have a non-zero inner magnetic field for
the triangular configuration). So we chose to use our own
results; moreover, they are in good agreement with the
ones in [16–20].

In this fit procedure, we include the data of five so-
lar neutrino detectors [4–7,?,9], where the latest data of
the SNO detector were included. We also include Super-
Kamiokande flux-independent information for taking into
account any possible spectrum distortion or Earth regen-
eration effect. A similar procedure was also done in a re-
cent work [19], where the RSFP mechanism was also an-
alyzed with a somewhat different magnetic field profile.

A local best fit point for this configuration exist for
∆m2 = 1.51 × 10−8 eV2, and Bmax = 1.95 × 105(×fB0)G,
for a neutrino magnetic moment given by µν = 10−11µB

(/fB0), and where Bmax is the maximum value of the mag-
netic field in the convective zone, giving a χ2

min = 41.4 for
46 degrees of freedom, which is a solution at ∼ 66% C.L..

Our χ2 function is defined as follows:

χ2 = χ2
R + χ2

fi,

where χ2
R (χ2

fi) relates to the total rates (flux-independent
information) given by all experiments considered (Super-
Kamiokande). These two contributions for the final χ2 can
be written as follows:
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where Rth
i and Robs

i denote, respectively, the predicted
and the measured value for the event rates of the five solar
experiments considered. For the flux-independent contri-
bution, we have

χ2
fi =

∑
i=1,44

[αRth
SK,i − Robs

SK,i][σfi(i, j)2]−1[αRth
SK,i − Robs

SK,i],

(12)
where Rth

SK,i are the theoretically expected event rates for
the ith bin computed by using the 8B neutrino energy
spectrum given in [21] normalized to the BP2000 SSM
value [15], Robs

SK,i is the corresponding observed rate re-
ported by the SK Collaboration [8], α is a free parameter
to avoid double-counting of the SK total rate in the sta-
tistical treatment, and σfi(i, j) is the 44 × 44 error matrix
for the SK zenith-spectrum data.

We introduced a normalization factor fB0 in both the
magnetic field profile and in the neutrino magnetic mo-
ment. Since for neutrino oscillations the important quan-
tity is µν × B, this factor does not change the quality of
the fit or any quantity related to neutrino oscillations. But
since the MHD equations depend only on B0, this factor
plays a crucial role in determining the profile of our MHD
perturbations.

We will do our analysis considering a 99% C.L. re-
gion on the parameter space around the best fit point.
According to our fit to the experimental data, this region
allows us to vary the value of ∆m2 in the range [1.0–
2.2] × 10−8 eV2.
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Fig. 3. Time fluctuations expected to the beryllium line, to
be seen in Borexino experiment. The vertical lines correspond
to the region within the beryllium line will fall with 99% C.L.,
according to the values obtained to ∆m2 with our fit procedure

4 Results

We will now analyze the effects of MHD fluctuations on
different future experiments. In Fig. 2 it can be seen that
when ∆m2/4E ∼ 10−14 eV there is a fluctuation of the or-
der of 10% of the detectable neutrinos. Considering that
the best fit of the RSFP solution to the solar neutrino
problem was obtained for ∆m2 ∼ 10−8 eV2 we conclude
that neutrinos with an energy of the order of 1 MeV will
be very sensitive to MHD fluctuations if the RSFP phe-
nomenon is the solution of the solar neutrino anomaly.
Solving the Hain–Lüst equation with gravity we obtained
the result that the period of oscillations of the MHD fluc-
tuations are of the order of 20 days. Such fluctuations can
only be detected in real-time experiments, otherwise they
would be averaged out over the detection time. Therefore,
it is necessary to consider the effect of these fluctuations
on low energy and real-time experiments, like Borexino,
Hellaz and Heron.

The Borexino experiment

This experiment [10] will be able to measure the beryllium
line neutrinos, in a real-time basis. Since the beryllium
neutrinos have a fixed energy (E = 0.863 MeV), it is quite
easy to predict the time dependence of the neutrino sig-
nal in Borexino for a given ∆m2, just reading it directly
from Fig. 2. Fixing the neutrino energy and taking the
magnetic field normalization fB0 = 5, we present in Fig. 3
the position of the beryllium line at 99% C.L. We show
the survival probability Psurv at the maximum and at the
minimum RSFP and the corresponding ∆Psurv difference.
Inside this C.L. region, no reasonable time fluctuation will
be felt by this experiment.

This behavior occurs in all kinds of magnetic fields
presented in [3], and can be understood analyzing the
properties of these solutions to the solar neutrino prob-
lem. In this scenario, we need a strong suppression of the
7Be neutrinos (similar to the small mixing angle solution
in the MSW scenario) in order to accommodate both re-
sults from the Homestake and Gallium experiments (Sage,
Gallex, GNO). So, for the 7Be neutrino line we must have a
completely adiabatic transition, which makes this line very
stable against perturbations of the magnetic field profile.

But although we cannot use MHD perturbations to
test the RSFP solution in Borexino, it has recently been
discussed [20] how the low value of the expected rate of
the beryllium line neutrinos on this experiment would be
a clear indication of the RSFP mechanism.

4.1 The Hellaz and Heron experiments

These experiments [11,12] will utilize the elastic reaction,
νe,µ,τ + e− → νe,µ,τ + e−, for real-time detection in the
energy region dominated by the pp and 7Be neutrinos.
They will both measure the energy of the recoil electron
and the overall rate. These low energy neutrinos are the
most abundant solar neutrinos, and the prediction of their
flux is the one which carries less uncertainty, because of
the correlation of these neutrinos with the solar luminos-
ity. Since the MHD fluctuations we found in [3] appear to
be affecting neutrinos with an energy range of the order
of the pp-neutrinos energy, maybe Hellaz and/or Heron
would be able to feel the time fluctuations on the neu-
trino signal generated by the MHD fluctuations.

We calculate the cross-section of the neutrino-electron
scattering in the usual form [22], using a step function for
the detector efficiency, to take into account the threshold
in the electron kinetic energy (Tmin. = 0.1 keV). Since we
do not have information about the resolution function of
the detector, we assumed a perfect resolution (meaning
that the measured kinetic energy of the scattered electron
is the true one). So we calculate the total rates following
the expression:

R =
∫ E

Emin

∫ T

Tmin.

[
dσe(T, E)

dT
Psurv(E)

+
dσx(T, E)

dT
(1 − Psurv(E))

]
Φ(E)dEdT, (13)

where Φ(E) is the solar neutrino flux and dσe(x)(T, E)/dT
is the differential cross-section of the electron (non-
electron) neutrino elastic scattering with electrons, in
terms of the neutrino energy (E) and the electron kinetic
energy (T ).

We present in Fig. 4a the expected detection rate in
low energy neutrino experiments, with the value of ∆m2 =
1.3 × 10−8 eV2, in terms of the neutrino energy (thus not
performing the integration in the neutrino energy in (13)),
for the maximum and minimum of the magnetic pertur-
bations. We plot also the result with no perturbation, and
for the SSM prediction.
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as a function of the neutrino energy, assuming a perfect energy resolution, for no perturbation (solid line), and maximum
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In Fig. 4b we present the time fluctuations of the total
rates calculated for low energy neutrino experiments. We
show the fluctuation of the number of events per day in one
period of MHD fluctuations. In this scenario we expect a ∼
8% fluctuation with a period of � 20 days, where this last
information is provided by the MHD equations. The total
detection rate is expected to be ∼ 7 events/day in Hellaz.
We can present the result given in Fig. 4b in terms of the
experiment running time that is necessary to identify such
fluctuations. If we assume that there are no significant
systematic errors, this time is given by the amount of days
needed to reduce the statistical errors to a value lower than
the expected sign variation. To do this estimation, we can
split the total data sample into two samples, one around
the maximum of the MHD fluctuation and the other one
around the minimum. To identify the fluctuations we need
the statistical errors of these data sample to be less than
half of the perturbation amplitude. Since the statistical
error is given by 1/(n1/2), where n is the number of events
in the sample, we can write

∆R

2
>

1√
N/2

, (14)

where N is the total number of events recorded by the ex-
periment, and ∆R is the maximum variation of the total
rates, calculated as in (13). The factor 2 comes from split-
ting the number of events in two samples. Since we expect
something around ∼ 7 pp events/day on experiments like
Hellaz or Heron, we can write for the number of running
days needed to identify the fluctuations

Ndays >
1
7

× 2
(

∆R

2

)2

. (15)

The result of this estimation is presented in Fig. 5. From
this we can see that, for one year (365 days, or ∼ 2500
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Fig. 5. The number of days needed to identify the MHD fluc-
tuations of Fig. 4b (assuming zero systematic errors)

events) of data taking, in principle it is possible to distin-
guish such fluctuations in the Hellaz experimental results,
if we have 3 ≤ fBO

≤ 5.
The magnetic field configuration used here is quite

large for the convective zone (we are using fB0 up to 4).
We can decrease the value of the magnetic field without
changing the solution to the SNP, if we increase by the
same factor the neutrino magnetic moment. But chang-
ing the magnetic field will change the MHD fluctuations,
changing the expected time fluctuations predicted to be
seen by low energy experiments. If we decrease the mag-
netic field, we get fluctuations with a smaller oscillation
length, and the parametric resonance felt by the solar neu-
trinos will occur for lower values of the neutrino energy.
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In Fig. 4 we can see that the fluctuations achieve ∼ 8%
of the signal for fB0 = 4, but decreases for ∼ 5% with
fB0 = 3, and almost vanishes for fB0 = 2.

5 Conclusion

The present data on solar neutrinos does not show any
positive flux-independent indication of neutrino oscilla-
tion. For instance, the Super-Kamiokande experiment is
not detecting a day–night asymmetry, nor a spectrum dis-
tortion of the neutrino flux. The only positive evidence of
solar neutrino oscillations comes from the total rate de-
tection on different solar neutrino experiments, and this
scenario leaves room for a number of different possible
mechanisms to solve the solar neutrino problem [19]. Find-
ing new ways to distinguish these possibilities is then very
important in order to reveal the true mechanism that is
causing the observed solar neutrino deficit. If the RSFP is
this mechanism, the analysis presented here is one of the
few ways to distinguish it from other oscillation scenarios,
and we showed that it is possible to find a signature of
this mechanism on possible time fluctuations of the low
energy neutrinos.
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